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Abstract. We consider hybrid systems as networks consisting of contin-
uous input-output systems and discrete input-output automata. Some of
the outputs may be connected to some of the inputs: the others server as

the inputs and outputs of the hybrid system. We define a class of regular
flows for such systems and make some remarks about them.

1 Introduction

In this paper, a hybrid system is a network consisting of continuous input-output
systems and discrete input-output automata. Some of the outputs may be con-

nected to some of the inputs; the others serve as the inputs and outputs of

the hybrid system. We are interested in flows of hybrid systems: to completely
characterize flows is too difficult a problem. Indeed, this is a generalization of

the problem of characterizing the flows of dynamical systems, which is already

too hard. In this paper, we first show how the characterization of flows may
be reduced to an algebraic problem and then make some remarks about this
problem.

The purpose of this paper is to explain these ideas simply and to give some
examples_Another more technical paper is in preparation which assumes a cer-

tain amount of background material in algebra, but gives the full definitions and

provides the proofs for the concepts explained here [8]. It is not hard to imple-
ment systems which simulate and analyze hybrid systems of the type described

here: a proof of concept implementation is described in [4].

There are a variety of interpretations for hybrid systems currently being ex-

plored. We mention three closely connected to the point of view in this paper.
An automaton may be viewed as enabling or disabling some of the continuous

input-output systems on the basis of discrete input symbols [7] and [6]. In other

words, the hybrid system reflects some type of generalized mode switching. Al-
ternatively, the automaton may be viewed as selecting trajectories or collections

of trajectories of the continous systems in order to satisfy performance specifi-
cations [1 I]. Yet another interpretation is for automaton to be used to construct

control laws for continous systems [10]. In this paper, we view hybrid systems
from the first point of view.
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Hybrid systems have a varietyof representations.The simplest are the state

space representationand the input-output representation.[n the state space

representation,the states,inputs, and outputs of each component continuous

system and automaton are described, as well as the input-output connections

between the varioussystems. [n the input-outputrepresentation,the inputs and
outputs of the hybrid system as a whole aredescribed.

[n this paper, we use a differentrepresentation--theobservation space rep-

resentation.Roughly speaking, this may be viewed as dual to the state space

representation.This representationisa very basicone: itforms the basisfor the

Heisenberg pictureinquantum mechanics [3];ithas been used to definediscrete

time controlsystems by Sontag [13]and continuous time control systems by
Bartosiewicz [1] and [2].

Using observation space representation, we define hybrid flows and regular
hybrid flows. Regular hybrid flows are flows which are finite concatenations of

flows of one or more continuous systems and mode switches. The important point

is that at most a finite number of mode switches are involved. We first give an

example of a hybrid flow which is not regular. We also give an an example of a

hybrid system with the property that every point in a neighborhood of the origin
can be reached using regular hybrid flows involving precisly one mode switch.

Without mode switching, not every point in a nighborhood of the origin can be

reached. These represent two extreme behaviors possible. It is an open problem
to provide more precise characterizations of hybrid flows.

To work out the basic properties of hybrid flows from this viewpoint requires
a certain amount of algebra. This is done in [8], with the results summarized

here. In Section 2, we describe the observation space representation of input-

output systems, automata, and hybrid systems, following [7]. In Section 3, we
define hybrid flows and give the examples mentioned above.

2 Observation space representations

A basic principle is that the states X of a system can be recovered from the

algebra of functions on the states R = Fun(X). R is one of several observalwn

algebras that can be associated with a system. This leads to the observation

space representation of a system which, broadly speaking, may be thought of
as dual to the state space representation. To make this precise we define both

a product structure on the space of observation functions, as is usual, and a

dual structure, called a coproduct. This will allow us to view hybrid systems as

suitable products of discrete automata and continuous control systems. As a by
product of this approach, we can obtain as special cases the approach used in

[13] to study discrete time control systems and the approach used in [1] and [2]
to study continous time control systems.

The basic idea is that the time evolution of a state by the dynamics may be

viewed as an action on the states, and that this action corresponds to an action
on the algebra R. In the case of continuous systems, this action is derivation of





R; in the case of discrete state systems, this action is an endomorphism of R.
We now explain this in more detail.

For continuous systems, a tangent vector to the space of states gives rise to

a derivation E of the algebra R, that is. a linear map from R to itself satisfying

E(fg) = fE(g) + E(f)g, f,g E R. (1)

For discrete state systems, the action of the space of input words w E W on the
states

Xx W_.V. (z,w)_z'=z.w

induces an action on the observation algebra R

_V X R_ R, (w,f) _" (w" f)(z) = f'(z) = f(z . w).

It is easy to see that the map

: R -- R. ..(f) = f'

is an endomorphism of R, that is, a linear map from R to itself satisfying

_r(fg) = _r(f)a(g), f, g E R. (2)

There is a natural generalization of these concepts which includes both of

them: that is, a bialgebra H which acts on the algebra R in such a manner that

h(fg) = E h(l}(f)h(21(g),

where A(h) = _'-_4h)h(l} ® h(2). We will see below how to define the coproduct
A to obtain Equations I and 2.

Recall that a coalgebra is a vector space C with linear maps

A:C_C®C

(the coproduct) and

e:C--k

(the counit), satisfying conditions stating that A is coassociative, and that e is
a counit. We use the notation

A(c) = E c(t} ® c(2_,
tel

to indicate that A sends an element c to some sum of terms of the form c(1)Oc_._.
Coalgebras arise here since they are natural structures for describing actions

on algebras. In particular, we will use them to describe the action on observation
algebras of hybrid systems. We will require that

c(fg) = A(c)(f _ g),





where c E C and f, g E R, when C is a coatgebra acting on the algebra R. To
say that e acts as a derivation is to say that c is prtmttzve:

....X(c)= I _c+cQ 1.

With this coproduct, we recover Equation 1. To say that c acts as an algebra
endomorphism is to say that c is grouphke:

A(c) = c _ c.

With this coproduct, we recover Equation 2. Denote the set of grouplikes of the
coalgebra C by F(C).

A btalgebra is an algebra and a coalgebra, in which the eoalgebra maps are
algebra homomorphisms. In the most general terms, a hybrid system in an ob-

servation space representation consists of a bialgebra H, a commutative algebra
R with identity, and an action of H on R which satisfies

h(fg) = Z h(l)(f)h(2)(g),

(h)

forhEH, andf, gER.

That is, H acts on R with the primitives of H acting as derivations of R, and
the grouplikes of H acting as endomorphisms of R. It is therefore a natural

generalization of both continuous systems (modeled by derivations) and discrete
state systems (modeled by discrete state transitions and the associated endo-

morphisms). Furthermore, as we shall see, it allows for hybrid systems exhibit-
ing both continous and discrete behavior to built from discrete and continous

components.

We now give a simp_example of a hybrid system, following [7]. Continuous

control systems can be viewed as special cases of this approach [5], as can discrete
automata [7].

Example 1. In this example, we view a "taxicab on the streets of Manhattan"

as a hybrid system with two modes: control in the first mode, corresponding
to State 1. results east-west motion, but no north-south motion; control in the

second mode, corresponding to State 2, results in north-south motion, but no

east-west motion. See Figure t. There are many ways of viewing this example.

Of course, this system, due to its simplicity, can be modeled by a single control
system in the plane consisting of a north-south vector field and an east-west

vector field. The approach we describe here. on the other hand, generalizes to

a large class of hybrid systems, viewed as mode switching of continous control

systems, controlled by a discrete automaton. It is important to note that the

automaton switches between two planar control systems, although the dynamics
of each are in fact are constrained to one dimension in this case.

We begin by defining the state space representation of the hybrid system.
Consider two control systems in the space k 2 of the form

zit) = ut(t)Ei'J(z(t)) + u.2.(t)E_'l(z(t)), for i = 1.2,





where
El1)=OlOXx, 1)= o,

and
2)= o, ET =OlOX2.

A two state automaton accepts an input symbol, changes states, outputs a sym-
bol, and on the basis of the output symbol selects a nonlinear system and a
corresponding flow. See Figure 1 again.

To define the observation space representation of the system, let RI = k[X1, X2],
i = 1, 2 denote the polynomial algebra on the indicated indeterminates and let

R = R1 (9 R2. Also, let k<(1,(2> denote the free noncommutative associative

algebra on the indicated indeterminates. We specify the action of the bialgebra
k<(1,(2> on R by specifying its actions on Ri, i = 1, 2: on R1

(1 acts as E_ 1) = c9/c9X1,

(2 acts as E_ 1) = 0;

on R2

(i acts as E[2): 0,

(2 acts as E_ 2) : 69/c9X2.

Consider input symbols al, corresponding to east-west travel only, and a2,

corresponding to north-south travel only. Let G = /-2" be the semigroup (that

is, the input words) freely generated by the input symbols 12 : {al,a2}. The
action of 12 (and thus of G) on R is given by specifying its action on Ri, i : 1,

2. Its action on R1 is given as follows: let P12 : R1 ---, R2 be the isomorphism
sending Xl 6 R1 to Xl E R2, and X2 E R1 to X2 E R2. Then, for f E R1,

f(9 P12(f) ifi = 1,al-f = 0 otherwise.

Its action on R2 is defined similarly. Intuitively, al maps all states into State 1,

and a2 maps all states into State 2. The action of 12 on R is the transpose

of this action. For simplicity, assume that the output symbol is given by the

current state. With this assumption, the "typical" element (u1(1 +u2(2)a2(vl(I+
v2(2)at E k<(l, (2> II k_12" is to be interpreted as making a transition to State 1,

flowing along vlEl 1) + v2E (I), making a transition to State 2, and then flowing

along uiE_ 2) + u2E_ 2). See Figure 2.

3 Flows

In this section, we consider flows of hybrid systems in the observation space

representation. For technical reasons, we do not consider the most general type
of hybrid system, but rather restrict attention to a smaller class. This restricted
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Fig. 1. The Manhattan taxicab hybrid system.

In this simple example, a finite state automaton with two states s_ and s2, accepts

input symbols al, as, aa .... transits states, and outputs a symbol bl, b2, b3 .... On the

basis of the output symbol, a new nonlinear system and corresponding flow is selected.

At the end of this flow, a new input symbol is accepted by the automaton and the

cycle repeats.

class includes-continuous systems, automata, and products of these, as in the

example in the last section.

Define a CDP bialgebra (Continous and Discrete Product bialgebra) to be

the free product of a primitively generated bialgebra H and a semigroup al-

gebra G. Specifically, the free product is formed in the category of augmented

algebras [12]. A bialgebra is called pnmztzvely generated if it is generated as an

algebra by its primitive elements. This is the case for hialgebras corresponding

to continuous systems [5], such as H = k<_1,_2> from Example 1. We consider

a CDP bialgebra H lI kG acting on an observation algebra R which is the direct

sum of finitely many component algebras P_ which are associated with contin-

uous systems (H, P_). This is an immediate generalization of Example 1. The

bialgebra H U kG acts on R = _)i Ri as follows. The bialgebra H acts on R, as

it does in the individual continuous systems (H, R,); the semigroup O acts on

the set of states {i}, and acts on the function algebra R in a fashion compatible

with its action on the states. ['or more detail, see [7].

We discuss flows in the context of formal series. If V is a vector space, denote

by t"t the space of formal power series V[[t]] = _._--0 t't" over V. In [9] completed

tensor products of spaces of the form I/'t and coalgebras of this form are discussed.





discrete input word
w=a2 al a2

s2

_ system 1

f system 2

s2

Fig. 2. Another view of the Manhattan taxicab hybrid system.

This is another view of the hybrid system illustrated in Figure 1. For this illustration,
assume for simplicity that the input symbol i selects the corresponding state and

nonlinear system. The flow sketched schematically above is the result of the input
word w = a2ala2, which results in the state transition sequence s2*ls2, which in turn
selects the nonlinear systems indicated.

Formally, the solution to the differential equation

_(t) = E(x(t)), z(0) = zo

is given by

z(t) = e_Ez °.

It can be shown that the fact that E is primitive implies that e ts is groupiike.

[n the observation space representation of a continuous system, the grouplike
etE E Ht is the flow corresponding to the differential equation z(t) = E(z(t)). To

summarize, the dynamics of a continuous Systems are infinitesimally determined

by derivations E E H while the flows are specified by grouplikes K E Hr. One
can think of/_" as being of the form h" = e tE

In the observation space representation of the discrete automaton in which

the alphabet of input symbols £2 acts on the state space of a finite automaton,
the flows are exactly the grouplike elements of the bialgebra (k.Q')t, where £2" is

the semigroup of words in the alphabet .(-2.It can be shown that these elements

are exactly the elements of £2". To summarize, the dynamics of an automaton

correspond to endomorphisms associated with input symbols, and the flows cor-

respond to grouplike elements of (k_"),, which are words in the input symbols.
The flows may be viewed as execution sequences of the automaton.





Weturn to the generalcasenow.GivenanybialgebraB, an algebra of

observation functions R, and a compatible action of B on R [7], the flows of

the hybrid system are defined to be the grouplike elements of Bt. We pose the
general problem:

Problem: Characterize the flows of hybrid systems.

As it stands, this is much too hard, since it includes as special cases the
problems of characterizing the flows of dynamical systems, of automata, and of

a large variety of systems formed from suitable products of these. In this note,

we introduce a class of nicely behaved flows and make some comments about
them.

In the observation space representation of the hybrid system in which the

underlying bialgebra of the observation space representation is the CDP algebra
B = H 1I kG, the flowsare the grouplikes in (H H kGh. Note that the map from

H, 11kG to ( H U kG)t induces a map from F(H, LIkG) to the flows F((H 11kG),).
The flows which are in the image of this map are ones which arise as a finite

sequence of continuous flows (elements of P(H,)) and mode switches (elements
of G = F(kG)). We call these flows regular fows.

Example 2. Let H II kG dnote a CDP bialgebra. This example shows that not

all flows are regular. Let E denote a primitive element of H, and let gl, g2 ....
be an infinite sequence of distinct invertible elements of G. Then

is a flow in F((H l_IkG)t) which is not in the image of F(H,) U G, since it cannot
be expressed usingonly finitely many mode switches.

We observe next that the taxicab example described in Example 1 has the

property that there exists a neighborhood of the origin of k 2 with the property
that every point z' in the neighborhood is of the form x' = Kx °, where x ° is

the origin and K is a regular flow. In other words, a neighborhood of the origin
is reachable using regular flows. It is also easy to see that almost all these flows

require at least one mode switch by an element of G = f2*.

Acknowledgment: We are grateful to Moss Sweedler for his helpful suggestions
in constructing a non regular flow in a hybrid system.
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